Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.

Identifieur interne : 000F12 ( Main/Exploration ); précédent : 000F11; suivant : 000F13

Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.

Auteurs : Amy C. Nulton-Persson [États-Unis] ; David W. Starke ; John J. Mieyal ; Luke I. Szweda

Source :

RBID : pubmed:12680778

Descripteurs français

English descriptors

Abstract

In a previous study, we found that treatment of rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery in the rate of state 3 NADH-linked respiration. These effects were shown to be mediated by reversible alterations in NAD(P)H utilization and in the activities of specific Krebs cycle enzymes alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase. The purpose of the current study was to examine potential mechanism(s) by which H(2)O(2) reversibly alters KGDH activity. We report here that inactivation is not simply due to direct interaction of H(2)O(2) with KGDH. In addition, incubation of mitochondria with deferroxamine, an iron chelator, or 1,3-dimethyl-2-thiourea, an oxygen radical scavenger, prior to addition of H(2)O(2) did not alter the rate or extent of inactivation. Thus, inactivation does not appear to involve a more potent oxygen radical formed upon metal-catalyzed oxidation. Inactive KGDH from H(2)O(2)-treated mitochondria was reactivated with dithiothreitol, implicating oxidation of a protein sulfhydryl(s). However, the thioredoxin system had no effect, indicating that enzyme inactivation is not due to the formation of intra- or intermolecular disulfide(s) or a sulfenic acid. Upon incubation of mitochondria with H(2)O(2), reduced GSH levels fell rapidly prior to enzyme inactivation but recovered at the same time as enzyme activity. Importantly, treatment of inactive KGDH with glutaredoxin facilitated the GSH-dependent recovery of KGDH activity. Glutaredoxin is characterized as a specific and efficient catalyst of protein deglutathionylation. Thus, the results of the current study indicate that KGDH activity appears to be modulated through enzymatic glutathionylation and deglutathionylation. These studies demonstrate a novel mechanism by which KGDH activity and mitochondrial function can be modulated by redox status.

DOI: 10.1021/bi027370f
PubMed: 12680778


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.</title>
<author>
<name sortKey="Nulton Persson, Amy C" sort="Nulton Persson, Amy C" uniqKey="Nulton Persson A" first="Amy C" last="Nulton-Persson">Amy C. Nulton-Persson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology and Biophysics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology and Biophysics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106</wicri:regionArea>
<wicri:noRegion>Ohio 44106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
<author>
<name sortKey="Szweda, Luke I" sort="Szweda, Luke I" uniqKey="Szweda L" first="Luke I" last="Szweda">Luke I. Szweda</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12680778</idno>
<idno type="pmid">12680778</idno>
<idno type="doi">10.1021/bi027370f</idno>
<idno type="wicri:Area/Main/Corpus">000F41</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F41</idno>
<idno type="wicri:Area/Main/Curation">000F41</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F41</idno>
<idno type="wicri:Area/Main/Exploration">000F41</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.</title>
<author>
<name sortKey="Nulton Persson, Amy C" sort="Nulton Persson, Amy C" uniqKey="Nulton Persson A" first="Amy C" last="Nulton-Persson">Amy C. Nulton-Persson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology and Biophysics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology and Biophysics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106</wicri:regionArea>
<wicri:noRegion>Ohio 44106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
<author>
<name sortKey="Szweda, Luke I" sort="Szweda, Luke I" uniqKey="Szweda L" first="Luke I" last="Szweda">Luke I. Szweda</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Ketoglutarate Dehydrogenase Complex (antagonists & inhibitors)</term>
<term>Mitochondria, Heart (drug effects)</term>
<term>Mitochondria, Heart (enzymology)</term>
<term>Mitochondria, Heart (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Rats, Sprague-Dawley (MeSH)</term>
<term>Thioredoxins (metabolism)</term>
<term>tert-Butylhydroperoxide (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>2-Hydroperoxy-2-méthyl-propane (pharmacologie)</term>
<term>Animaux (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Ketoglutarate dehydrogenase complex (antagonistes et inhibiteurs)</term>
<term>Mitochondries du myocarde (effets des médicaments et des substances chimiques)</term>
<term>Mitochondries du myocarde (enzymologie)</term>
<term>Mitochondries du myocarde (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Rat Sprague-Dawley (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Ketoglutarate Dehydrogenase Complex</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
<term>tert-Butylhydroperoxide</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Ketoglutarate dehydrogenase complex</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mitochondria, Heart</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mitochondries du myocarde</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries du myocarde</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria, Heart</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria, Heart</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Mitochondries du myocarde</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>2-Hydroperoxy-2-méthyl-propane</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Oxidation-Reduction</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Oxydoréduction</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In a previous study, we found that treatment of rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery in the rate of state 3 NADH-linked respiration. These effects were shown to be mediated by reversible alterations in NAD(P)H utilization and in the activities of specific Krebs cycle enzymes alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase. The purpose of the current study was to examine potential mechanism(s) by which H(2)O(2) reversibly alters KGDH activity. We report here that inactivation is not simply due to direct interaction of H(2)O(2) with KGDH. In addition, incubation of mitochondria with deferroxamine, an iron chelator, or 1,3-dimethyl-2-thiourea, an oxygen radical scavenger, prior to addition of H(2)O(2) did not alter the rate or extent of inactivation. Thus, inactivation does not appear to involve a more potent oxygen radical formed upon metal-catalyzed oxidation. Inactive KGDH from H(2)O(2)-treated mitochondria was reactivated with dithiothreitol, implicating oxidation of a protein sulfhydryl(s). However, the thioredoxin system had no effect, indicating that enzyme inactivation is not due to the formation of intra- or intermolecular disulfide(s) or a sulfenic acid. Upon incubation of mitochondria with H(2)O(2), reduced GSH levels fell rapidly prior to enzyme inactivation but recovered at the same time as enzyme activity. Importantly, treatment of inactive KGDH with glutaredoxin facilitated the GSH-dependent recovery of KGDH activity. Glutaredoxin is characterized as a specific and efficient catalyst of protein deglutathionylation. Thus, the results of the current study indicate that KGDH activity appears to be modulated through enzymatic glutathionylation and deglutathionylation. These studies demonstrate a novel mechanism by which KGDH activity and mitochondrial function can be modulated by redox status.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12680778</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>05</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>42</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2003</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.</ArticleTitle>
<Pagination>
<MedlinePgn>4235-42</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In a previous study, we found that treatment of rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery in the rate of state 3 NADH-linked respiration. These effects were shown to be mediated by reversible alterations in NAD(P)H utilization and in the activities of specific Krebs cycle enzymes alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase. The purpose of the current study was to examine potential mechanism(s) by which H(2)O(2) reversibly alters KGDH activity. We report here that inactivation is not simply due to direct interaction of H(2)O(2) with KGDH. In addition, incubation of mitochondria with deferroxamine, an iron chelator, or 1,3-dimethyl-2-thiourea, an oxygen radical scavenger, prior to addition of H(2)O(2) did not alter the rate or extent of inactivation. Thus, inactivation does not appear to involve a more potent oxygen radical formed upon metal-catalyzed oxidation. Inactive KGDH from H(2)O(2)-treated mitochondria was reactivated with dithiothreitol, implicating oxidation of a protein sulfhydryl(s). However, the thioredoxin system had no effect, indicating that enzyme inactivation is not due to the formation of intra- or intermolecular disulfide(s) or a sulfenic acid. Upon incubation of mitochondria with H(2)O(2), reduced GSH levels fell rapidly prior to enzyme inactivation but recovered at the same time as enzyme activity. Importantly, treatment of inactive KGDH with glutaredoxin facilitated the GSH-dependent recovery of KGDH activity. Glutaredoxin is characterized as a specific and efficient catalyst of protein deglutathionylation. Thus, the results of the current study indicate that KGDH activity appears to be modulated through enzymatic glutathionylation and deglutathionylation. These studies demonstrate a novel mechanism by which KGDH activity and mitochondrial function can be modulated by redox status.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nulton-Persson</LastName>
<ForeName>Amy C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology and Biophysics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Starke</LastName>
<ForeName>David W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Szweda</LastName>
<ForeName>Luke I</ForeName>
<Initials>LI</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AG-16339</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>955VYL842B</RegistryNumber>
<NameOfSubstance UI="D020122">tert-Butylhydroperoxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.4.2</RegistryNumber>
<NameOfSubstance UI="D007655">Ketoglutarate Dehydrogenase Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007655" MajorTopicYN="N">Ketoglutarate Dehydrogenase Complex</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008929" MajorTopicYN="N">Mitochondria, Heart</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020122" MajorTopicYN="N">tert-Butylhydroperoxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12680778</ArticleId>
<ArticleId IdType="doi">10.1021/bi027370f</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<name sortKey="Starke, David W" sort="Starke, David W" uniqKey="Starke D" first="David W" last="Starke">David W. Starke</name>
<name sortKey="Szweda, Luke I" sort="Szweda, Luke I" uniqKey="Szweda L" first="Luke I" last="Szweda">Luke I. Szweda</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Nulton Persson, Amy C" sort="Nulton Persson, Amy C" uniqKey="Nulton Persson A" first="Amy C" last="Nulton-Persson">Amy C. Nulton-Persson</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12680778
   |texte=   Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12680778" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020